
1

The MARS Encryption Algorithm

Carolynn Burwick c , Don Coppersmith a , Edward D’Avignon c , Rosario Gennaroa ,

Shai Halevia , Charanjit Jutlaa , Stephen M. Matyasc , Luke O’Connord , Mohammad

Peyravianb , David Safforda , Nevenko Zunicc

a IBM T. J. Watson Research, Yorktown Heights, NY 10598, USA

b IBM Corporation, Research Triangle Park, NC 27709, USA

c IBM Corporation, Poughkeepsie, NY 12601, USA

d IBM Zurich Research, Rueschlikon, Switzerland

August 27, 1999

ABSTRACT

This paper describes and analyzes the MARS symmetric-key encryption algorithm which is a new block

cipher submitted to NIST for consideration as the Advanced Encryption Standard (AES). MARS

supports 128-bit blocks and a variable key size. It is designed to take advantage of the powerful

operations supported in today’s computers, resulting in a much improved security/performance tradeoff

over existing ciphers. Specifically, in MARS we use a unique combination of S-box lookups,

multiplications and data-dependent rotations. MARS has a heterogeneous structure, with cryptographic

core rounds that are wrapped by simpler mixing rounds. The cryptographic core rounds provide strong

resistance to all known cryptanalytical attacks, while the mixing rounds provide good avalanche and offer

very wide security margins to thwart new (yet unknown) attacks. Our C implementation of MARS runs

at rates of 85 Mbit/sec on a 200 MHz PowerPC, and 65 Mbit/sec on a 200 MHz Pentium-Pro. The

cryptographic core runs at 160 Mbit/sec on the PowerPC, and 104 Mbit/sec on the Pentium-Pro. MARS

can achieve a 10 times speedup factor in hardware. MARS is also suitable for limited-resource

environments such as the smartcard since its code is remarkably compact.

Keywords: analysis, block cipher, encryption, MARS, symmetric key

1 Introduction
Symmetric-key block ciphers have long been used as a fundamental cryptographic element for providing

information security. Although they are primarily designed for providing data confidentiality, their versatility

allows them to serve as a main component in the construction of many cryptographic systems such as pseudorandom

2

number generators, message authentication protocols, stream ciphers, and hash functions. There are many

symmetric-key block ciphers which offer different levels of security, flexibility, and efficiency. Among the many

symmetric-key block ciphers currently available, some (such as DES, RC5, CAST, Blowfish, FEAL, SAFER, and

IDEA) have received the greatest practical interest [6-11].

Most symmetric-key block ciphers (such as DES, RC5, CAST, and Blowfish) are based on a “Feistel” network

construct and a “round function”. A Feistel cipher involves dividing the plaintext into two halves and repeatedly

applying a round function to the data for some number of rounds, where in each round using the round function and

a key, the left half is transformed based on the right half and then the right half is transformed based on the modified

left half. The round function provides a basic encryption mechanism by composing several simple linear and non-

linear operations such as exclusive-or, substitution, permutation, and modular arithmetic [4,5].

Different round functions provide different levels of security, efficiency, and flexibility. The strength of a Feistel

cipher depends heavily on the degree of diffusion and non-linearity properties provided by the round function.

Many ciphers (such as DES and CAST) base their round functions on a construct called a “substitution box” (s-box)

as a source of diffusion and non-linearity. Some ciphers (such as RC5) use bit-wise data-dependent rotations and a

few other ciphers (such as IDEA) use multiplication in their round functions for diffusion.

In this paper, we present a novel symmetric-key block cipher, called MARS, with a block size of 128 bits and a

variable key size, ranging from 128 to 448 bits. The MARS cipher uses a variety of operations to provide a

combination of high security, high speed, and implementation flexibility. The main theme behind the design of

MARS is to get the best security/performance tradeoff by utilizing the strongest techniques available today for

designing block ciphers.

The rest of this paper is organized as follows. In Section 2, we present MARS which includes the description of

encryption/decryption operation and key setup. The performance and implementation of MARS in software and

hardware are discussed in Section 3. The rationale behind the design of MARS is presented in Section 4. A

cryptanalysis of MARS and its resistance against linear and differential attacks is discussed in Section 5. Section 6

provides some concluding remarks.

2 Description of MARS
MARS takes as input four 32-bit plaintext data words A, B, C, D and produces four 32-bit ciphertext data words A',

B', C', D'. The cipher is word-oriented, in that all the internal operations are performed on 32-bit words. MARS is a

type-3 Feistel network, divided into three phases: a 16-round “cryptographic core” phase wrapped with two layers

of 8-round “forward” and “backwards mixing” (Figure 1). The cryptographic core rounds provide strong resistance

to all known cryptanalytical attacks, while the mixing rounds provide good avalanche and offer very wide security

margins to thwart new (yet unknown) attacks.

3

MARS accepts a variable size user-supplied key ranging from 4 to 14 words (i.e., 128 to 448 bits). MARS uses a

key expansion procedure to “expand” the user-supplied key (consisting of n 32-bit words, where n is any number

between 4 and 14) into a key array K[] of 40 words for the encryption/decryption operation.

The MARS cipher uses a variety of operations to provide a combination of high security, high speed, and

implementation flexibility. Specifically, it combines exclusive-or (xor), addition, subtractions, multiplications, and

both fixed and data-dependent rotations. MARS also uses a single (S-box) table of 512 32-bit words to provide

good resistance against linear and differential attacks, as well as good avalanche of data and key bits. This S-box is

also used by the key expansion procedure. Sometimes the S-box is viewed as two tables, each of 256 entries,

denoted by S0 and S1. In the design of the S-box, we generated the entries in a “pseudo-random fashion” and tested

that the resulting S-box has good differential and linear properties. The MARS S-box is shown in an appendix at the

end of paper.

The pseudo-code in Figure 2 shows the encryption operation of MARS in detail. The operations used in the cipher

are applied to 32-bit words, which are viewed as unsigned integers. In this pseudo-code we use the following

notations. We number the bits in each word from 0 to 31, where bit 0 is the least significant (or lowest) bit, and bit

31 is the most significant (or highest) bit. We denote by c⊕d a bitwise exclusive-or of the two words c and d. We

denote by c+d addition modulo 232, by c-d subtraction modulo 232, and by c×d multiplication modulo 232. Also,

c<<<d and c>>>d, denote cyclic rotations of the 32-bit word c by d positions to the left and right, respectively.

The decryption operation of MARS is the inverse of the encryption operation and the code for decryption is similar

“Forward Mixing”

8 rounds of “forward mixing”

“Backwards Mixing”

8 rounds of “Backwards mixing”

“Cryptographic Core”

16 rounds of transformation

 D C B A

 D' C' B' A'

Plaintext: four 32-bit words

Ciphertext: four 32-bit words

Figure 1: High-level structure of MARS encryption procedure

4

to the code for encryption.

2.1 Description of MARS Key Expansion
The MARS key expansion procedure expands the user-supplied key ranging from 4 to 14 words into a 40-word key

S-box based stirring of key-words

Modifying multiplication key-words

 k[0] k[1] k[n-1]

 K[0] K[1] K[39]

n initial 32-bit key words

(4 ≤ n ≤ 14)

Forty 32-bit key words

Linear key-word expansion

Figure 3: Key expansion procedure of MARS

// Forward Mixing
(A,B,C,D) = (A,B,C,D) + (K[0],K[1],K[2],K[3])
For i = 0 to 7 do {

B = (B ⊕ S0[A]) + S1[A>>>8]
C = C + S0[A>>>16]
D = D ⊕ S1[A>>>24]
A = (A>>>24) + B(if i=1,5) + D(if i=0,4)
(A,B,C,D) = (B,C,D,A)

}
// Cryptographic Core
For i = 0 to 15 do {

R = ((A<<<13) × K[2i+5]) <<< 10
M = (A + K[2i+4]) <<< (low 5 bits of (R>>>5))
L = (S[M] ⊕ (R>>>5) ⊕ R) <<< (low 5 bits of R)
B = B +L(if i<8) ⊕ R(if i≥8)
C = C + M
D = D ⊕ R(if i<8) + L(if i≥8)
(A,B,C,D) = (B,C,D,A<<<13)

}
// Backwards Mixing
For i = 0 to 7 do {

A = A - B(if i=3,7) - D(if i=2,6)
B = B ⊕ S1[A]
C = C - S0[A<<<8]
D = (D - S1[A<<<16]) ⊕ S0[A<<<24]
(A,B,C,D) = (B,C,D,A<<<24)

}
(A,B,C,D) = (A,B,C,D) - (K[36],K[37],K[38],K[39])

NOTE: S0[X] and S1[X] use low 8 bits of X. S[X] uses low 9 bits of X.
S is the concatenation of S0 and S1.

Figure 2: MARS encryption pseudocode

5

for use in the encryption/decryption operation. The key expansion procedure consists of three steps (Figure 3). The

first step is “linear expansion” which expands the original user-supplied key to forty 32-bit words using a simple

linear transformation. The second step is “S-box based key stirring” which stirs the expanded key using seven

rounds of a type-1 Feistel network to destroy linear relations in the key. Then a “multiplication key-word

modifying” step examines the key words which are used in the MARS encryption/decryption operation for

multiplication and modifies them if needed. The pseudo-code in Figure 4 shows the key expansion operation of

MARS in detail. In the pseudo-code c∧d denotes bitwise-and of the two words c and d.

3 MARS Performance
Here we provide some performance measurements for MARS encryption/decryption operations as well as the key

expansion procedure. The performance of MARS is independent of the key length used due to the structure of the

key expansion procedure. Also, the performance measurements for the encryption and decryption operations are

essentially the same since MARS is a symmetric-key cipher, its decryption process is the inverse of the encryption

process, and the decryption code is similar to the encryption code.

MARS can achieve very high performance in software since it is designed to take full advantage of the powerful

operations available in today’s computers. We currently have a C implementation running at 85 Mbit/sec on

PowerPC with a clock rate of 200MHz. On an IBM-compatible PC with a 200MHz Pentium-Pro processor, MARS

// Initialize T[] With the Original Key Data k[]
T[0 … n-1] = k[0 … n-1], T[n] = n, T[n+1 … 14] = 0
For j = 0, 1, … ,3 do {

// Linear Key-Word Expansion
For i = 0, 1, … ,14 do { T[i] = T[i] ⊕ ((T[i-7 mod 15] ⊕ T[i-2 mod 15]) <<< 3) ⊕ (4i+j) }
// S-box Based Stirring of Key-Words
Repeat 4 times { For i = 0, 1, … ,14 do { T[i] = (T[i] + S[low 9 bits of T[i-1 mod 15]]) <<< 9 } }
// Store Next 10 Key-Words into K[]
For i = 0, 1, … ,9 do { K[10j+i] = T[4i mod 15] }

}
// Modifying Multiplication Key-Words
B[] = {0xa4a8d57b; 0x5b5d193b; 0xc8a8309b; 0x73f9a978}
For i = 5, 7, … ,35 do {

j = least two bits of K[i]
w = K[i] with both of the lowest two bits set to 1
Compute a word mask M as follows:

M = 0
Mn = 1 iff wn belongs to a sequence of 10 consecutive 0’s or 1’s in w,
and also 2 ≤ n ≤ 30 and wn-1 = wn = wn+1

r = least five bits of K[i-1]
p = B[j] <<< r
K[i] = w ⊕ (p ∧ M)

}

NOTE: xi denotes the i-th bit in the 32-bit word x.

Figure 4: MARS key expansion pseudocode

6

runs at 65 Mbit/sec. The speed of the MARS “cryptographic core” by itself on these machines is 160 Mbit/sec and

104 Mbit/sec, respectively. MARS is significantly faster than DES and Triple-DES. Current optimized C

implementation of DES runs at 16.7 Mbit/sec on an IBM-compatible PC with a 200MHz Pentium-Pro processor.

On the same machine, Triple-DES runs at 7.3 Mbit/sec.

The performance of the MARS key expansion operation is independent of the key length used due to the structure of

the key expansion procedure. Our C implementation of the key expansion procedure sets up 121,000 keys/sec on a

PowerPC with a clock rate of 200MHz. On an IBM-compatible PC with a 200MHz Pentium-Pro processor, it sets

up 52,000 keys/sec.

MARS can also be implemented efficiently in hardware. We estimate that a hardware implementation of MARS

with a single multiplier takes about 70,000 cells. This count includes circuitry for encryption, decryption and key

generation (but does not include the registers for the sub-keys). The majority of the cell usage is devoted to the S-

box, adders, and the multiplier. This cell count easily fits on all chips, including smartcards. As a basis for

comparison, a typical DES implementation is approximately 28,000 cells. With this implementation, the forward

and backwards mixing phases can be completed within 9 cycles, each. The cryptographic core phase takes 32

cycles. In total, we estimate that an encryption/decryption of one block takes 50 clock cycles. This implies a

performance estimate of 640 Mbit/sec for encryption and decryption. Modes of operation that allow pipelining

(such as ECB mode, counter mode, or decryption in CBC mode) can be implemented much faster. In particular, a

hardware implementation consisting of four copies of the mixing rounds and the core can produce a throughput of

one block every 8 cycles, resulting in an encryption/decryption rate of 4Gbit/sec. It is even possible to use four

copies of the mixing rounds and eight copies of the core to get a throughput of one block every 4 cycles. The cell

count of this last implementation is about 393,000 (which is still reasonable), and it achieves throughput of 8

Gbit/sec.

4 MARS Design Rationale
Cryptanalytical techniques typically treat the top and bottom rounds of the cipher differently than the middle rounds.

These techniques begin by guessing several key bits, hence “stripping out” some of the top/bottom rounds of the

cipher, and then mounting the cryptanalytical attack against the remaining rounds. This suggests that the top and

bottom rounds of the cipher play a different role than the middle rounds in protecting against cryptanalytical attacks.

Specifically, for these rounds we care more about fast avalanche of the key bits (which is a combinatorial property)

than about resistance to cryptanalysis. Theoretical evidence for the different role played by the top and bottom

rounds can be found in the Naor-Reingold constructions [12], in which a “cryptographic core” is wrapped with some

non-cryptographic mixing.

Therefore, in the design of MARS the middle rounds are viewed as the “cryptographic core” and are designed

differently than the top and bottom rounds, which are viewed as “wrapper layers”. Specifically, the wrapper layers

7

consist of first adding in key words, and then performing several rounds of (unkeyed) S-box based mixing,

providing rapid avalanche of key bits. The core layer consists of several rounds of keyed transformation which

involves a combination of S-box lookups, multiplications and data-dependent rotations to get good resistance to

cryptanalytical attacks.

Another advantage of this heterogeneous structure is that it is likely to provide better resistance against new (yet

undiscovered) cryptanalytical techniques. Namely, a cipher consisting of two radically different structures is more

likely to be resilient to new attacks than a homogeneous cipher, since in order to take advantage of a weakness in

one structure one has to propagate this weakness through the other structure. Viewed in this light, this mixed

structure can be thought of as an “insurance policy” to protect the cipher against future advances in cryptanalytical

techniques.

4.1 Cryptographic Core
The cryptographic core of the MARS cipher is a type-3 Feistel network, consisting of sixteen rounds. In each round

we use a keyed “E-function” (E for expansion) which takes as input one data word and returns three data words as

output. The structure of the Feistel network is depicted in Figure 5, and the E-function itself is shown in Figure 6. In

each round we use one data word as the input to the E-function, and the three output words from the E-function are

added or xored to the other three data words. In addition, the source word is rotated by 13 positions to the left.

To ensure that the cipher has the same resistance to chosen ciphertext attacks as it has for chosen plaintext attacks,

the three outputs from the E-function are used in a different order in the first eight rounds than in the last eight

rounds. Namely, in the first eight rounds we add the first and second outputs of the E-function to the first and

second target words, respectively, and xor the third output into the third target word. In the last eight rounds, we add

the first and second outputs of the E-function to the third and second target words, respectively, and xor the third

output into the first target word.

A2

B2

C2

D2

“Forward mode”

13<<<

out1

out2

out3

E-Function

A1

B1

C1

D1

A2

B2

C2

D2

“Backwards mode”

13<<<

out1

out2

out3

E-Function

A1

B1

C1

D1

Figure 5: Type-3 Feistel network of the MARS cryptographic core

8

The E-function takes as input one data word and uses two more key words to produce three output words. In this

function we use three temporary variables, denoted below by L, M and R (for left, middle and right). Below we also

refer to these variables as the three “lines” in the function.

Initially, we set R to hold the value of the source word rotated by 13 positions to the left, and we set M to hold the

sum of the source word and the first key word. We then view the lowest nine bits of M as an index to a 512-entry S-

box S, and set L to hold the value of the corresponding S-box entry. We then multiply the second key word

(constrained to contain an odd integer) into R and then rotate R by 5 positions to the left (so the 5 highest bits of the

product becomes the 5 lowest bits of R after the rotation). Then we xor R into L, and also view the five lowest bits

of R as a rotation amount between 0 and 31, and rotate M to the left by this amount. Next, we rotate R by 5 more

positions to the left and xor it into L. Finally, we again view the five lowest bits of R as a rotation amount and rotate

L to the left by this amount. The first output word of the E-function is L, the second is M and the third is R.

In the design of the E-function we combined the different operations in a way that would maximize the advantages

from each. Some properties of this function which are worth noting are the following:

1. The lower bits of the input to the multiplication have a larger effect on the product than the higher bits. Thus, in

the E-function, bits which are not fed as input to the S-box will be the lowest bits in the data word which is

being multiplied. The amount of rotation (13 bits) was set to maximize the resistance of the E-function to

differential attacks.

2. The most significant bits are the “stronger bits” in the product since they are affected by almost all the input

bits. In the combination of the multiplication and the data-dependent rotation, we use these “strong bits” to

determine the amounts of the data-dependent rotations.

13<<<

out1

out2

out3

in

k’ (odd)

k

R

M

L

5<<<

S

<<<

5<<<

<<<

<<< Data-dependent rotation S S-box

Figure 6: E-Function of the MARS cryptographic core

9

3. Since the internal structure of the E-function is very sensitive to the location of the input bits, it makes sense to

apply a constant rotation to the data lines, so as to make it hard for an attacker to maintain a consistent behavior

across rounds. Since we use a rotation of the source word by 13 inside the E-function, we can get a rotation by

13 of the corresponding data line for free.

4. The E-function was designed to be efficient, and to admit a high level of parallelism. In particular, the two most

expensive operations (multiplication and S-box lookup) can be carried out in parallel.

4.2 Wrapper Layers
The forward and backwards mixing phases (i.e., the wrapper layers) are essentially inverses of each other. The

forward mixing phase begins with the addition of key-words into the data-words, followed by 8 rounds of S-box

based, unkeyed mixing. The backwards-mixing phase has 8 rounds of the inverse mixing rounds, followed by key-

subtraction.

In each forward and backwards mixing round, one data word (called the source word) is used to modify the other

three data words (called the target words). The four bytes of the source word are viewed as indices into two S-

boxes, S0 and S1, each consisting of 256 32-bit words, and the corresponding S-box entries are xored or

added/subtracted into the other three data words. (For S0 and S1 we use the first and last 256 entries of the S-box S

from the core rounds, respectively.)

Denote the four bytes of the source words by b0, b1, b2, b3, where b0 is the lowest byte and b3 is the highest byte. In

the forward mixing rounds we use b0, b2 as indices into the S-box S0 and b1, b3 as indices into the S-box S1. We first

xor S0[b0] into the first target word, and then add S1[b1] to the same word. We also add S0[b2] to the second target

word and xor S1[b3] to the third target word. Finally, we rotate the source word by 24 positions to the right.

In the backwards mixing rounds we use b0, b2 as indices into the S-box S1 and b1, b3 as indices into the S-box S0. We

xor S1[b0] into the first target word, subtract S0[b3] from the second data word, subtract S1[b2] from the third target

word and then xor S0[b1] also into the third target word. Finally, we rotate the source word by 24 positions to the

left.

In both forward and backwards mixing, the four words are rotated after each round, so that the current first target

word becomes the next source word, the current second target word becomes the next first target word, the current

third target word becomes the next second target word, and the current source word becomes the next third target

word.

In addition, we sometimes add/subtract one of the target words back into the source word. Specifically, in the

10

forward phase we add the third target word back into the source word after the first and fifth rounds, and add the

first target word back into the source word after the second and sixth round. In the backwards-phase we subtract the

first target word from the source word before the fourth and eighth rounds, and subtract the third target word from

the source word before the third and seventh round. The reasons for these extra mixing operations are to eliminate

some easy differential attacks against the mixing phase, to break the symmetry in the mixing phase and to get faster

avalanche.

5 MARS Security
We expect the security level of MARS with an n-bit key to be 2n for key lengths up to at least 256 bits. We do not

expect the security level to grow as rapidly beyond 2256. Hence the main reason for using keys longer than 256 bits

is convenience, not security.

We estimate that any linear or differential attacks against MARS must have data complexity of more than 2128,

which means that for block-length of 128 bits these attacks are impossible. In a full paper submitted to NIST for

AES (Advanced Encryption Standard) [3] we justify this estimate by providing crude (though conservative) bounds

on the complexity of such attacks. For these bounds we consider only the cryptographic core of MARS (which is

equivalent to analyzing 16R-attacks in the sense of [1], since it entails ignoring the 16 rounds of mixing in the

cipher).

For linear attacks, we show that no “constructible” linear approximation of the keyed transformation has a bias of

more than 2-69, which implies data complexity of more than 2128. By “constructible” approximation we mean an

approximation which is obtained by combining approximations for the internal operations of the cipher, computing

the bias using the Piling-up lemma [2].

For differential attacks [1] we provide two arguments: We first present a heuristic argument explaining why it is

unlikely that one would be able to construct a characteristic of the keyed transformation with probability more than

2-240, taken over both the key and the data. We then also devise a more conservative (and very crude) bound of 2-156

on the probability of any characteristic of the keyed transformation, where the probability is again taken over both

the key and the data.

6 Conclusion
MARS is a fast and secure symmetric-key block cipher with a heterogeneous structure. It offers much improved

security/performance over existing ciphers by taking advantage of the powerful operations supported in today’s

computers. Both software and hardware implementations of MARS are remarkably compact, making it also suitable

for limited-resource environments such as the smartcard. The combination of high security, high speed, and

flexibility makes MARS an excellent choice for the encryption needs of the information world well into the next

century.

11

7 References
[1] E. Biham and A. Shamir, “Differential cryptanalysis of the data encryption standard”, Springer-Verlag,

1993.

[2] M. Matsui, “Linear cryptanalysis method for {DES} cipher”, Advances in Cryptology, EUROCRYPT ‘93,

Lecture Notes in Computer Science, vol. 765, T. Helleseth ed., Springer-Verlag, pages 386--397, 1994.

[3] C. Burwick, D. Coppersmith, E. D’Avignon, R. Gennaro, S. Halevi, C. Jutla, S.M. Matyas, L. O’Connor, M.

Peyravian, D. Safford, and N. Zunic, “MARS – a candidate cipher for AES”,

http://www.research.ibm.com/security/mars.html, July 1998.

[4] B. Schneier, “Applied Cryptography,” 2nd edition, John Wiley & Sons Inc, 1996.

[5] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, “Handbook of Applied Cryptography,” CRC Press,

1996.

[6] R. L. Rivest, “The RC5 Encryption Algorithm,” Dr. Dobb’s Journal, Vol. 20, No. 1, Pages 146-148, January

1995.

[7] B. Schneier, “The Blowfish Encryption Algorithm,” Dr. Dobb’s Journal, Vol. 19, No. 4, Pages 38-40, April

1994.

[8] National Bureau of Standards, “Data Encryption Standard,” FIPS PUB 46, January 1977.

[9] J. L. Massey, “SAFER K-64: A Byte-Oriented Block-Ciphering Algorithm,” Fast Software Encryption,

Cambridge Security Workshop Proceedings, Springer-Verlag, Pages 1-17, 1994.

[10] C. M. Adams, “Constructing Symmetric Ciphers Using the CAST Design Procedure,” Design, Codes, and

Cryptography, Vol. 12, No 3, Pages 283-316, November 1997.

[11] B. Schneier, “The IDEA Encryption Algorithm,” Dr. Dobb’s Journal, Vol. 18, No. 13, Pages 50-56,

December 1990.

[12] M. Naor and O. Reingold, “On the Construction of Pseudo-Random Permutations: Luby-Rackoff Revisited”,

Proceedings of the 29’th ACM Symposium on Theory of Computing, pages 189-199, 1997.

Appendix
The MARS S-box is shown below.

Word Sbox[] = {

0x09d0c479, 0x28c8ffe0, 0x84aa6c39, 0x9dad7287, 0x7dff9be3, 0xd4268361, 0xc96da1d4, 0x7974cc93, 0x85d0582e, 0x2a4b5705,
0x1ca16a62, 0xc3bd279d, 0x0f1f25e5, 0x5160372f, 0xc695c1fb, 0x4d7ff1e4, 0xae5f6bf4, 0x0d72ee46, 0xff23de8a, 0xb1cf8e83,
0xf14902e2, 0x3e981e42, 0x8bf53eb6, 0x7f4bf8ac, 0x83631f83, 0x25970205, 0x76afe784, 0x3a7931d4, 0x4f846450, 0x5c64c3f6,
0x210a5f18, 0xc6986a26, 0x28f4e826, 0x3a60a81c, 0xd340a664, 0x7ea820c4, 0x526687c5, 0x7eddd12b, 0x32a11d1d, 0x9c9ef086,
0x80f6e831, 0xab6f04ad, 0x56fb9b53, 0x8b2e095c, 0xb68556ae, 0xd2250b0d, 0x294a7721, 0xe21fb253, 0xae136749, 0xe82aae86,
0x93365104, 0x99404a66, 0x78a784dc, 0xb69ba84b, 0x04046793, 0x23db5c1e, 0x46cae1d6, 0x2fe28134, 0x5a223942, 0x1863cd5b,
0xc190c6e3, 0x07dfb846, 0x6eb88816, 0x2d0dcc4a, 0xa4ccae59, 0x3798670d, 0xcbfa9493, 0x4f481d45, 0xeafc8ca8, 0xdb1129d6,
0xb0449e20, 0x0f5407fb, 0x6167d9a8, 0xd1f45763, 0x4daa96c3, 0x3bec5958, 0xababa014, 0xb6ccd201, 0x38d6279f, 0x02682215,
0x8f376cd5, 0x092c237e, 0xbfc56593, 0x32889d2c, 0x854b3e95, 0x05bb9b43, 0x7dcd5dcd, 0xa02e926c, 0xfae527e5, 0x36a1c330,
0x3412e1ae, 0xf257f462, 0x3c4f1d71, 0x30a2e809, 0x68e5f551, 0x9c61ba44, 0x5ded0ab8, 0x75ce09c8, 0x9654f93e, 0x698c0cca,
0x243cb3e4, 0x2b062b97, 0x0f3b8d9e, 0x00e050df, 0xfc5d6166, 0xe35f9288, 0xc079550d, 0x0591aee8, 0x8e531e74, 0x75fe3578,
0x2f6d829a, 0xf60b21ae, 0x95e8eb8d, 0x6699486b, 0x901d7d9b, 0xfd6d6e31, 0x1090acef, 0xe0670dd8, 0xdab2e692, 0xcd6d4365,
0xe5393514, 0x3af345f0, 0x6241fc4d, 0x460da3a3, 0x7bcf3729, 0x8bf1d1e0, 0x14aac070, 0x1587ed55, 0x3afd7d3e, 0xd2f29e01,
0x29a9d1f6, 0xefb10c53, 0xcf3b870f, 0xb414935c, 0x664465ed, 0x024acac7, 0x59a744c1, 0x1d2936a7, 0xdc580aa6, 0xcf574ca8,
0x040a7a10, 0x6cd81807, 0x8a98be4c, 0xaccea063, 0xc33e92b5, 0xd1e0e03d, 0xb322517e, 0x2092bd13, 0x386b2c4a, 0x52e8dd58,

12

0x58656dfb, 0x50820371, 0x41811896, 0xe337ef7e, 0xd39fb119, 0xc97f0df6, 0x68fea01b, 0xa150a6e5, 0x55258962, 0xeb6ff41b,
0xd7c9cd7a, 0xa619cd9e, 0xbcf09576, 0x2672c073, 0xf003fb3c, 0x4ab7a50b, 0x1484126a, 0x487ba9b1, 0xa64fc9c6, 0xf6957d49,
0x38b06a75, 0xdd805fcd, 0x63d094cf, 0xf51c999e, 0x1aa4d343, 0xb8495294, 0xce9f8e99, 0xbffcd770, 0xc7c275cc, 0x378453a7,
0x7b21be33, 0x397f41bd, 0x4e94d131, 0x92cc1f98, 0x5915ea51, 0x99f861b7, 0xc9980a88, 0x1d74fd5f, 0xb0a495f8, 0x614deed0,
0xb5778eea, 0x5941792d, 0xfa90c1f8, 0x33f824b4, 0xc4965372, 0x3ff6d550, 0x4ca5fec0, 0x8630e964, 0x5b3fbbd6, 0x7da26a48,
0xb203231a, 0x04297514, 0x2d639306, 0x2eb13149, 0x16a45272, 0x532459a0, 0x8e5f4872, 0xf966c7d9, 0x07128dc0, 0x0d44db62,
0xafc8d52d, 0x06316131, 0xd838e7ce, 0x1bc41d00, 0x3a2e8c0f, 0xea83837e, 0xb984737d, 0x13ba4891, 0xc4f8b949, 0xa6d6acb3,
0xa215cdce, 0x8359838b, 0x6bd1aa31, 0xf579dd52, 0x21b93f93, 0xf5176781, 0x187dfdde, 0xe94aeb76, 0x2b38fd54, 0x431de1da,
0xab394825, 0x9ad3048f, 0xdfea32aa, 0x659473e3, 0x623f7863, 0xf3346c59, 0xab3ab685, 0x3346a90b, 0x6b56443e, 0xc6de01f8,
0x8d421fc0, 0x9b0ed10c, 0x88f1a1e9, 0x54c1f029, 0x7dead57b, 0x8d7ba426, 0x4cf5178a, 0x551a7cca, 0x1a9a5f08, 0xfcd651b9,
0x25605182, 0xe11fc6c3, 0xb6fd9676, 0x337b3027, 0xb7c8eb14, 0x9e5fd030, 0x6b57e354, 0xad913cf7, 0x7e16688d, 0x58872a69,
0x2c2fc7df, 0xe389ccc6, 0x30738df1, 0x0824a734, 0xe1797a8b, 0xa4a8d57b, 0x5b5d193b, 0xc8a8309b, 0x73f9a978, 0x73398d32,
0x0f59573e, 0xe9df2b03, 0xe8a5b6c8, 0x848d0704, 0x98df93c2, 0x720a1dc3, 0x684f259a, 0x943ba848, 0xa6370152, 0x863b5ea3,
0xd17b978b, 0x6d9b58ef, 0x0a700dd4, 0xa73d36bf, 0x8e6a0829, 0x8695bc14, 0xe35b3447, 0x933ac568, 0x8894b022, 0x2f511c27,
0xddfbcc3c, 0x006662b6, 0x117c83fe, 0x4e12b414, 0xc2bca766, 0x3a2fec10, 0xf4562420, 0x55792e2a, 0x46f5d857, 0xceda25ce,
0xc3601d3b, 0x6c00ab46, 0xefac9c28, 0xb3c35047, 0x611dfee3, 0x257c3207, 0xfdd58482, 0x3b14d84f, 0x23becb64, 0xa075f3a3,
0x088f8ead, 0x07adf158, 0x7796943c, 0xfacabf3d, 0xc09730cd, 0xf7679969, 0xda44e9ed, 0x2c854c12, 0x35935fa3, 0x2f057d9f,
0x690624f8, 0x1cb0bafd, 0x7b0dbdc6, 0x810f23bb, 0xfa929a1a, 0x6d969a17, 0x6742979b, 0x74ac7d05, 0x010e65c4, 0x86a3d963,
0xf907b5a0, 0xd0042bd3, 0x158d7d03, 0x287a8255, 0xbba8366f, 0x096edc33, 0x21916a7b, 0x77b56b86, 0x951622f9, 0xa6c5e650,
0x8cea17d1, 0xcd8c62bc, 0xa3d63433, 0x358a68fd, 0x0f9b9d3c, 0xd6aa295b, 0xfe33384a, 0xc000738e, 0xcd67eb2f, 0xe2eb6dc2,
0x97338b02, 0x06c9f246, 0x419cf1ad, 0x2b83c045, 0x3723f18a, 0xcb5b3089, 0x160bead7, 0x5d494656, 0x35f8a74b, 0x1e4e6c9e,
0x000399bd, 0x67466880, 0xb4174831, 0xacf423b2, 0xca815ab3, 0x5a6395e7, 0x302a67c5, 0x8bdb446b, 0x108f8fa4, 0x10223eda,
0x92b8b48b, 0x7f38d0ee, 0xab2701d4, 0x0262d415, 0xaf224a30, 0xb3d88aba, 0xf8b2c3af, 0xdaf7ef70, 0xcc97d3b7, 0xe9614b6c,
0x2baebff4, 0x70f687cf, 0x386c9156, 0xce092ee5, 0x01e87da6, 0x6ce91e6a, 0xbb7bcc84, 0xc7922c20, 0x9d3b71fd, 0x060e41c6,
0xd7590f15, 0x4e03bb47, 0x183c198e, 0x63eeb240, 0x2ddbf49a, 0x6d5cba54, 0x923750af, 0xf9e14236, 0x7838162b, 0x59726c72,
0x81b66760, 0xbb2926c1, 0x48a0ce0d, 0xa6c0496d, 0xad43507b, 0x718d496a, 0x9df057af, 0x44b1bde6, 0x054356dc, 0xde7ced35,
0xd51a138b, 0x62088cc9, 0x35830311, 0xc96efca2, 0x686f86ec, 0x8e77cb68, 0x63e1d6b8, 0xc80f9778, 0x79c491fd, 0x1b4c67f2,
0x72698d7d, 0x5e368c31, 0xf7d95e2e, 0xa1d3493f, 0xdcd9433e, 0x896f1552, 0x4bc4ca7a, 0xa6d1baf4, 0xa5a96dcc, 0x0bef8b46,
0xa169fda7, 0x74df40b7, 0x4e208804, 0x9a756607, 0x038e87c8, 0x20211e44, 0x8b7ad4bf, 0xc6403f35, 0x1848e36d, 0x80bdb038,
0x1e62891c, 0x643d2107, 0xbf04d6f8, 0x21092c8c, 0xf644f389, 0x0778404e, 0x7b78adb8, 0xa2c52d53, 0x42157abe, 0xa2253e2e,
0x7bf3f4ae, 0x80f594f9, 0x953194e7, 0x77eb92ed, 0xb3816930, 0xda8d9336, 0xbf447469, 0xf26d9483, 0xee6faed5, 0x71371235,
0xde425f73, 0xb4e59f43, 0x7dbe2d4e, 0x2d37b185, 0x49dc9a63, 0x98c39d98, 0x1301c9a2, 0x389b1bbf, 0x0c18588d, 0xa421c1ba,
0x7aa3865c, 0x71e08558, 0x3c5cfcaa, 0x7d239ca4, 0x0297d9dd, 0xd7dc2830, 0x4b37802b, 0x7428ab54, 0xaeee0347, 0x4b3fbb85,
0x692f2f08, 0x134e578e, 0x36d9e0bf, 0xae8b5fcf, 0xedb93ecf, 0x2b27248e, 0x170eb1ef, 0x7dc57fd6, 0x1e760f16, 0xb1136601,
0x864e1b9b, 0xd7ea7319, 0x3ab871bd, 0xcfa4d76f, 0xe31bd782, 0x0dbeb469, 0xabb96061, 0x5370f85d, 0xffb07e37, 0xda30d0fb,
0xebc977b6, 0x0b98b40f, 0x3a4d0fe6, 0xdf4fc26b, 0x159cf22a, 0xc298d6e2, 0x2b78ef6a, 0x61a94ac0, 0xab561187, 0x14eea0f0,
0xdf0d4164, 0x19af70ee
}

